If √3(cos2x)=(√3−1)cosx+1, the number of solutions of the given equation when x∈[0,π2] is
Open in App
Solution
√3(cos2x)=(√3−1)cosx+1 Put cosx=t ⇒√3t2−(√3−1)t−1=0 ⇒t=(√3−1)±√4+2√32√3 ⇒t=1 or −1√3 ⇒cosx=1 or −1√3→ rejected as x∈[0,π2] ⇒cosx=1 ⇒ Number of solution =1