The correct options are
A 2nπ+π6
B 2nπ−π2
√3cotx−cosec x=1
⇒√3cosxsinx−1sinx=1
⇒√3cosx−1=sinx
⇒√3cosx−sinx=1 ...(1)
Dividing both sides of (1) by √(√3)2+(−1)2 i.e., by 2, we get
√32cosx−12sinx=12
⇒cosxcosπ6−sinxsinπ6=12
⇒cos(x+π6)=cosπ3
⇒(x+π6)=2nπ±π3
x=2nπ+π6 or 2nπ−π2,n∈Z.