If √3sin θ=cos θ, find the value of 3 cos2θ+2 cos θ3 cos θ+2
Given ,√3 sin θ=cos θ
⇒ sinθcosθ=1√3
or, tan θ=1√3
⇒tan θ=tan 30∘ [∵tan30∘=1√3]
⇒θ=30∘
On simplifying the given equation, we get
3 cos2θ+2 cos θ3 cos θ+2
=cos θ(3cos θ+2)(3cos θ+2) [Taking cosθ common in the numerator]
=cos θ
Substituting θ=30∘, we get
=cos 30∘
=√32
∴3 cos2θ+2 cos θ3 cos θ+2=√32