Consider the given equation.
√3tanθ=3sinθ
√3sinθcosθ=3sinθ
√3=3cosθ
cosθ=√33
cosθ=1√3 …….. (1)
Since,
=sin2θ−cos2θ
We know that
sin2θ=1−cos2θ
Therefore,
=1−cos2θ−cos2θ
=1−2cos2θ
From equation (1), we get
=1−2×(1√3)2
=1−23
=13
Hence, the value is 13.