wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tany=ecos2xsinx, then dydx is equal to

A
sin2y(cotx+2sin2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sin2y(cotx2sin2x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sin2x(cotx2sin2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin2x(cotx+2sin2x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B sin2y(cotx2sin2x)
Given,
tany=ecos2xsinx
Applying logarithm both sides,
12ln(tany)=cos2x+ln(sinx)
Differentiating w.r.t. x,
121tanysec2y(dydx)=2sin2x+1sinxcosx
12sinycosydydx=cotx2sin2x
dydx=sin2y(cotx2sin2x)

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon