wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tany=ecos2xsinx, then dydx=

A
sin2y(cotx2sin2x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sin2x(cotysiny)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin2ysin2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cos2y.cos2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B sin2y(cotx2sin2x)
tany=ecos2xsinx

differentiating w.r.t. x
12tany×sec2ydydx=ecos2x×2sin2x.sinx+ecos2xcosx

sec2y2tanydydx=ecos2x[2sin2x.sinx+cosx]

sec2y2tanydydx=tanysinx[cosx2sin2x.sinx]

dydx=2tanycos2ysinx[cosx2sinx.sin2x]

dydx=2sinycosysinx[cosx2sinx.sin2x]

dydx=sin2y[cotx2sin2x]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon