The correct option is C 15
x12x.(2x)14x.(4x)18x.(8x)116x…∞=323125 ... (i)
LHS=(x12x+14x+18x+116x…∞)×(214x+28x+316x+…∞)=x1x(12+14+18+116+…∞)×214x(1+221+322+423+…∞) ... (ii)
Now, let S=12+14+18+116+...∞
It is an infinite G.P. with first term as 12 and common ratio as 12
So, S=121−12=1 ... (iii)
And, letS′=1+221+322+423+…∞ ... (iv)
Multiplying (iv) with 12, we get,
12S′= 121+222+323+…∞ ... (v)
On subtracting (v) from (iv), we get,
12S′=1+12+122+123+…∞
⇒S′=2(1+12+122+123+…∞)
⇒S′=2[11−12]=4
From (i)
LHS=x1x×S×214x×S′=x1x×21x=323125
⇒(x)1x.(2)1x=(2)5(5)5=(15)5(2)5
⇒x=15