wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If 2sinA=sinBsin3B and 2cosA=cosB+cos3B, then the possible value(s) of sin(AB) is/are

A
sin(AB)=122sin2B
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sin(AB)=122sin2B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin(AB)=13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin(AB)=13
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A sin(AB)=122sin2B
C sin(AB)=13
D sin(AB)=13
2sinA=sinBsin3B ...(1)
2cosA=cosB+cos3B ...(2)
Now,
eqn(1)×cosBeqn(2)×sinB, gives
2(sinAcosBcosAsinB)=sin3BcosBcos3BsinB
2sin(AB)=cosBsinB
sin(AB)=122sin2B ...(3)

Now,
2(cos2A+sin2A) =(cosB+cos3B)2+(sinBsin3B)2
2=1+2(cos4Bsin4B)+(cos6B+sin6B)
1=2(cos2Bsin2B)+(cos4B+sin4Bcos2Bsin2B)
1=2cos2B+(cos2B+sin2B)23cos2Bsin2B
1=2cos2B+134sin22B
0=8cos2B3sin22B
3cos22B+8cos2B3=0
(3cos2B1)(cos2B+3)=0
cos2B=13, cos2B3
sin2B=±223
From eqn(3),
sin(AB)=±13

flag
Suggest Corrections
thumbs-up
21
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon