The correct option is
C 9we can say that the line
y=2x+k is secant for circle.
∴ solving line and circle together. ⇒4x2+4(2x+k)2−4x−8(2x+k)−15=0⇒4x2+4(4x2+4xk+k2)−4x−16x−8k−15=0⇒20x2+16kx+4k2−20x−8k−15=0⇒20x2+16kx−20x+4k2−8k−15=0⇒20x2+x(16k−20)+4k2−8k−15=0∴ line cuts circle at two distinct points so we nued D>0 for this quadratic in x
(16k−20)2−4(20)(4k2−8k−15)>0
⇒16(4k−5)2−80(4k2−8k−15)>0
⇒16(16k2+25−40k)−80(4k2−8k−15)>0
⇒16k2+25−40k−5(4k2−8k−15)>0
⇒16k2+25−4ϕk−20k2+40k+75>0
⇒−4k2+100>0
⇒−4k2>−100
⇒4k2<100⇒k2<25∴−5<K<5
so passible integer values of k are −4,−3,−2,−1,0,1,2,3,4
i.e there are nine values
∴ Answer option (c)