If π∑i=1i = n(n+1)2, then π∑i=1(3i−2) =
n(3n−1)2
n(3n+1)2
n(3n + 2)
n(3n+1)4
π∑i=1 = 3π∑i=1i - 2 π∑i=11 = 3 n(n+1)2 - 2n = n(3n−1)2
If π∑i=1i = i(i+1)2, then n∑i=1(3i−2) =