If the sum of all the solutions of the equation 8cos(x)cos(π6)+x.cosπ6-x-12=1in0,πiskπ, then k is equal to
89
209
23
139
Explanation for the correct option:
Step 1: Solve the given equation
⇒8cosxcos(π6)+x.cosπ6-x-12=1⇒8.cosxcosπ3+cos2x-12=1⇒4cosxcos2x-12=1⇒4cosx2cos2x-32=1⇒8cos3x-6cosx-1=0⇒2(4cos3x-3cosx)-1=0⇒2cos3x-1=0
Step 2: Find all of the possible x values.
∴cos(3x)=12⇒cos(3x)=cos(π3)⇒3x=2nπ±π3⇒x=2nπ3±π9⇒x=7π9,5π9,π9,in[0,π]
Therefore, k=139
Hence, the correct answer is an option (D).
Let [k] denotes the greatest integer less than or equal to k. Then the number of positive integral solutions of the equation [x[π2]]=⎡⎢ ⎢⎣x[1112]⎤⎥ ⎥⎦ is