∞∑n=1(21(SnSn+2+Sn−1Sn+1)−(SnSn+1+Sn−1Sn+2))
=∞∑n=1(21Sn(Sn+2−Sn+1)−Sn−1(Sn+2−Sn+1))
=∞∑n=1(21(Sn+2−Sn+1)(Sn−Sn−1))
=∞∑n=1(21Tn+2⋅Tn)
∴Tn=Sn−Sn−1=3n2−2n−(3(n−1)2−2(n−1))=6n−5
Tn+2=6n+7
Now,
∞∑n=121Tn+2⋅Tn=∞∑n−121(6n+7)(6n−5)=2112∞∑n=1(16n−5−16n+7)
=2112[(11−113)+(17−119)+(113−125)+(119−131)+…]
=2112×87=2