If sum of the perpendicular distances of a variable point P(x,y) form the lines x+y−5=0 and 3x−2y+7=0 is always 10.
Show that P must move on a line.
The equations of given lines are
x+y−5=0 …(i) and 3x−2y+7=0 …(ii)
Perpendicular distance of point P(x,y) from line x+y−4=0
=∣∣ ∣∣x+y−5√(1)2+(1)2∣∣ ∣∣=∣∣∣x+y−5√2∣∣∣
Perpendicular distance of point P(x,y) from line 3x−2y+7=0
=∣∣ ∣∣3x−2y+7√(3)2+(−2)2∣∣ ∣∣=∣∣∣3x−2y+7√13∣∣∣
It is given that
=∣∣∣x+y−5√2∣∣∣=∣∣∣3x−2y+7√13∣∣∣=10
⇒ |√13(x+y−5)|+|√2(3x−2y+7)|=10√26
When x+y−4≥0 and 3x−2y+7≥0
Then √13(x+y−5)+√2(3x−2y+7)=10√26
⇒ (√13+3√2)x+(√13−2√2)y−5√13+7√2−10√26=0
Which represents a line
Similarly
When x+y−4≥0 and 3x−2y+7<0
x+y−5<0and3x−2y+7≥0
and x+y−5<0 and 3x−2y+7<0
In all the above cases it represents a line, thus point P(x,y) must move on a line.