The sum of the perpendicular distances of the point ( x,y ) from the lines x+y−5=0 and 3x−2y+7=0 is always 10.
The equation of the lines is
x+y−5=0 (1)
3x−2y+7=0(2)
The formula for the perpendicular distance d of a line Ax+By+C=0 from a point ( x 1 , y 1 ) is given by,
d= | A x 1 +B y 1 +C | A 2 +B 2 (3)
Let A 1 , B 1 , C 1 and A 2 , B 2 , C 2 be the values for the line of equation (1) and equation (2).
Compare equation (1) and equation (2) with the general form of equation of line Ax+By+C=0.
A 1 =1, B 1 =1, C 1 =−5 A 2 =3, B 2 =−2, C 2 =7
Let d 1 and d 2 be the perpendicular distances of the point ( x,y ) from the lines x+y−5=0 and 3x−2y+7=0.
Substitute the values of A 1 , B 1 , C 1 in equation (1).
d 1 = | x+y−5 | 1 2 +1 2 d 1 = | x+y−5 | 2
Substitute the values of A 2 , B 2 , C 2 in equation (2).
d 2 = | 3x−2y+7 | 3 2 +2 2 d 2 = | 3x−2y+7 | 9+4 d 2 = | 3x−2y+7 | 13
The sum of the distances is 10 units.
d 1 + d 2 =10
Substitute the values of d 1 and d 2 in the above expression.
| x+y−5 | 2 + | 3x−2y+7 | 13 =10 13 ×| x+y−5 |+ 2 ×| 3x−2y+7 | 26 =10 13 ×| x+y−5 |+ 2 ×| 3x−2y+7 |=10× 26
Further simplify the above expression assuming ( x+y−5 ) and ( 3x−2y+7 ) to be positive.
13 ×( x+y−5 )+ 2 ×( 3x−2y+7 )=10× 26 13 x+ 13 y−5 13 +3 2 x−2 2 y+7 2 =10 26 ( 13 +3 2 )x+( 13 −2 2 )y+( 7 2 −5 13 −10 26 )=0
Thus, the point P will move on the line.