The perpendicular distance of P(x,y) from lines (1) and (2) are respectively given by
d1=|x+y−5|(1)2+(1)2andd2=|3x−2y+7|√(3)2+(−2)2
i.e.,d1=|x+y−5|√2andd2=|3x−2y+7|√13
it is given that d1+d2=10
∴|x+y−5|√2+|3x−2y+7|√13=10
⇒√13|x+y−5|+√2|3x−2y+7|−10√26=0
[Assuming (x+y-5) and (3x-2y+7) are positive]
⇒√13x+√13y−5√13+3√2x−2√2y+7√2−10√26=0
⇒x(√13+3√2)+y(√13−2√2)+(7√2−5√13−10√26)=0,
which is the equation of a line similarly, we can obtain the equation of line for any signs of (x+y−5) and (3x−2y+7)
Thus, The point P must move on a line.