The correct options are
A P is prime number
B log3P+logP3=2
Given : log2(32+x−6x)=3+xlog2(32)
⇒log2⎛⎜
⎜
⎜
⎜⎝32+x−6x(32)x⎞⎟
⎟
⎟
⎟⎠=3⇒2x⋅3x(9−2x)3x=8⇒2x(9−2x)=8
Assuming 2x=t, we get
⇒t(9−t)=8⇒t2−9t+8=0⇒(t−8)(t−1)=0⇒t=1,8⇒2x=1,8⇒x=0,3⇒P=0+3=3
Check the options.