Integration to Solve Modified Sum of Binomial Coefficients
If sum of the...
Question
If sum of the series 1⋅1+3⋅01+5⋅001+7⋅0001 upto n terms be n2+1m(1−1kn), then find k−m.
Open in App
Solution
S=1⋅1+3⋅01+5⋅001+7⋅0001 upto n terms =(1+3+5+...+2n−1)+(10−1+10−2+10−3+...+10−n)= sum of A.P + sum of G.P S=n(2+(n−1)2)2+110(110n−1)110−1=n2+19(1−110n) Therefore, k−m=10−9=1