The correct options are
B P is prime number
C log3P+logP3=2
log2(32+x−6x)=3+xlog2(32)
log2⎛⎜
⎜⎝32+x−6x(32)x⎞⎟
⎟⎠=3[∵mlogx=logxm&loga−logb=logab]
⇒23=32+x−6x(32)x
⇒8(32)x=9(3x)−3x2x
⇒(9−2x)2x=8
Put 2x=t
t2−9t+8=0
(t−8)(t−1)=0
t=8,1
2x=23,2x=1
x=3,x=0
Sum of solutions, P=3
Here, P is a prime number.
So, option A is correct.
Now,log3P+logp3=1+1=2
Option B is correct.
Also,log3(P−1)=log32≠0
log3(P+1)=log34≠0
Option C and D are incorrect