an=tan−1[39n2+3n−1]
=tan−1[31+(3n+2)(3n−1)]⇒tan−1[(3n+2)−(3n−1)1+(3n+2)(3n−1)]
=tan−1(3n+2)−tan−1(3n−1)
∴ Sum of first 10 terms
=∑10r=1ar=∑10r=1[(tan−1(3r+2)−tan−1(3r−1))]
=(tan−132−tan−12)=tan−1(32−21+32.2)
=tan−13065=tan−1(613)=cot−1(136)=cot−1(mn)
∴ m=13 and n = 6
Hence (m-n)= 13-6=7