The correct option is A n2+3n2(n+1)(n+2)
∵Tn=Sn−Sn−1
=∑nr=1Tr−∑n−1r=1Tr
=n(n+1)(n+2)(n+3)8−(n−1)n(n+1)(n+2)8
=n(n+1)(n+2)8[(n+3)−(n−1)]
=n(n+1)(n+2)8(4)
=n(n+1)(n+2)2
⇒1Tn=2n(n+1)(n+2)⋯(1)
∴Vn=2(n+1)(n+2)
then, Vn−1=2n(n+1)
∴Vn−Vn−1=2(n+1)(n+2)−2n(n+1)
=−4n(n+1)(n+2)
=−21Tn from (1)
∴1Tn=−12(Vn−Vn−1)
Putting n=1,2,3,...n, we get
1T1=−12(V1−V0)
1T2=−12(V2−V1)
1T3=−12(V3−V2)
.......................................
.........................................
1Tn=−12(Vn−Vn−1)
∴1T1+1T2+1T3+....+1Tn=−12(Vn−V0)
⇒∑nr=11Tr=−12[2(n+1)(n+2)−22]
=(n+1)(n+2)−22(n+1)(n+2)
=n2+3n2(n+1)(n+2)