If T0,T1,T2,...,Tn represent in the terms in the expansion of (x+a)n, then the value of (T0−T2+T4−T6+...)2+(T1−T3+T5+...)2 is equal to
A
(x2−a2)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(x2+a2)n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(a2−x2)n
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B(x2+a2)n (x+a)n=xn+nC0(x)n−1(a)+...+nCn(a)n Hence, T0=xn T1=nC0(x)n−1(a) . . . Tn=nCn(a)n Replace a by ia. (x+ia)n=xn+i×nC1×(x)n−1(a)−nC2×(x)n−2(a)2+...+in×nCnan ⇒(x+ia)n=(xn−nC2(x)n−2+...)+i(nC1(x)n−1(a)−nC3(x)n−3(a)3+...) ⇒(x+ia)n=(T0−T2+T4−...)+i(T1−T3+T5−...) Consider the modulus of (x+ia)n ⇒|(x+ia)n|2=(T0−T2+T4−...)2+(T1−T3+T5−...)2 ⇒|(x+ia)|2n=(T0−T2+T4−...)2+(T1−T3+T5−...)2 ⇒(x2+a2)n=(T0−T2+T4−...)2+(T1−T3+T5−...)2 Hence, option B is the correct answer.