Given,
f(x)=x−x2
Put x=t1 and x=t2 we get
f(t1)=t1−t12
f(t2)=t2−t22
Now,
f(t1)+f(t2)=t1−t12+t2−t22
=t1+t2−(t12+t22)
Taking
f(x)=x−x2
Differentiate w.r.to x we get ,
f′(x)=1−2x
For maxima and minima f′(x)=0
1−2x=0
x=12
Differentiate again f′′(x)=−2
Put x=12
We get, f′′(x)=−2<0
Now, f(12)=(12)−(12)2=12−14=14
Hence,f(t1)+f(t2)will be maximum when
f(t1)=f(t2)=14
[f(t1)+f(t2)]max=[(t1+t2)−(t1+t2)2]max=14+14=12