If t=−2 then log4t24−2log44t4=
We have,
t=−2
Since,
log4t24−2log44t4
Therefore,
=log4(−2)24−2log44(−2)4
=log444−2log44×16
=log41−2log464
=0−2log443(∴loga1=0)
=−2×3log44(∴logamn=nlogam)
=−6(∴logaa=1)
Hence, this is the answer.