The correct option is C π8
π/8∫0[secx+2[tanx+3[cosx+4[sinx]]]]dx
Let [tanx+3[cosx+4[sinx]]]=k
Then, k∈Z
We know [x+n]=[x]+n,n∈Z
Now, [secx+2[tanx+3[cosx+4[sinx]]]]
=[secx]+2[tanx+3[cosx+4[sinx]]]=[secx]+2([tanx]+3[cosx+4[sinx]])=[secx]+2[tanx]+6[cosx+4[sinx]]=[secx]+2[tanx]+6[cosx]+24[sinx]
So, π/8∫0[secx+2[tanx+3[cosx+4[sinx]]]]dx
=π/8∫0[secx]dx+π/8∫02[tanx]dx+π/8∫06[cosx]dx+π/8∫024[sinx]dx=π/8∫01⋅dx+0+0+0=π8