The correct option is D 492+2
2+3+6+11+18................⇒differenceofseriesareinA.P3−2=1,6−3=3,11−6=5,18−11=7⇒1,3,5,7areinA.P⇒Sumof(n−1)termofseries(1,3,5,7)+2⇒a=1,d=2⇒S49=492[2×1+(49−1)×2]=49(1+49−1)⇒S49=492,TogettheT50termadd2+sumofthe1+3+5+7+..............,T50=(492+2)Ans.