If Tn=n2−1, find (i) Tn−1 (ii) Tn+1
(i) Tn−1
Given: Tn=n2−1
Put n=n−1
∴Tn−1=n(n−2)
Put n=n+1
∴Tn+1=n(n+2)
(a) Tn = n find (i) Tn+1 (ii) T n−1
(b) If Tn = n2 − 1 find (i) Tn−2 (ii) Tn+1
(c) If Tn = 2n2 + 1 find the value of n if Tn = 73
(d) In a sequence Tn = 5 − 3n find (i) Tn+1 (ii) Tn+2