wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tn=sinnθ+cosnθ, prove that T3T5T1=T5T7T3

Open in App
Solution

Given, Tm=sinnθ+cosnθ

T3T5T1=sin3θsin5θ+cos3θcos5θsinθ+cosθ

=sin3θ(1sin2θ)+sin3θ(1cos2θ)sinθ+cosθ

=sin3θcos2θ+cos3θsin2θsinθ+cosθ

=sin2θcos2θ(1)

T5T7T3=sin5θsin7θ+cos5θcos7θsin3θ+cos3θ

=sin5θ(1sin2θ)+cos5θ(1cos2θ)sin3θ+cos3θ

=sin5θcos2θ+cos5θsin2θsin3θ+cos3θ

=sin2θcos2θ(2)

From (1) and (2)

T3T5T1=T5T7T3Proved

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon