(i) T3−T5T1=T5−T7T3LHSsin3θ+cos3θ−sin5θ−cos5θsinθ+cosθ=sin3θ−sin5θ+cos3θ−cos5θsinθ+cosθ=sin3θ(1−sin2θ)+cos3θ(1−cos2θ)sinθ+cosθ=sin3θ.cos2θ+cos3θ.sin2θsinθ+cosθ
=sin2θ.cos2θ(sinθ+cosθ)(sinθ+cosθ)=sin2θ.cos2θRHSsin5θ+cos5θ−sin7θ.−cos7θsin3θ+cos3θ=sin5θ(1−sin2θ)+cos5θ(1−cos2θ)sin3θ+cos3θ=sin5θ.cos2θ+cos5θ.sin2θ(sin3θ+cos3θ)
=(sin2θ.cos2θ)=LHS .(Now take out commons terms)
(ii) 2Tb−3T4+1=0
LHS 2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
We know,
a3+b3=(a+b)(a2−ab+b2)∴sin6θ+cos6θ=(sin2θ)3+(cos2θ)=(sin2θ+cos2θ)(sin4θ+cos4θ−sin2θcos2θ)=(sin4θ+cos4θ−sin2θ.cos2θ)
∴2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1=2(sin4θ+cos4θ)−2sin2θ.cos2θ−3(sin4θ+cos4θ)+1=1−(sin4θ+cos4θ)−2sin2θcos2θ=1−(sin4θ+cos4θ+2sin2θcos2θ)=1−(sin2θ+cos2θ)2=1−1=0=RHS