wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tn=sinnθ+cosnθ, prove that
(i)T3T5T1(ii)2T63T4+1=0

Open in App
Solution

(i) T3T5T1=T5T7T3LHSsin3θ+cos3θsin5θcos5θsinθ+cosθ=sin3θsin5θ+cos3θcos5θsinθ+cosθ=sin3θ(1sin2θ)+cos3θ(1cos2θ)sinθ+cosθ=sin3θ.cos2θ+cos3θ.sin2θsinθ+cosθ
=sin2θ.cos2θ(sinθ+cosθ)(sinθ+cosθ)=sin2θ.cos2θRHSsin5θ+cos5θsin7θ.cos7θsin3θ+cos3θ=sin5θ(1sin2θ)+cos5θ(1cos2θ)sin3θ+cos3θ=sin5θ.cos2θ+cos5θ.sin2θ(sin3θ+cos3θ)
=(sin2θ.cos2θ)=LHS .(Now take out commons terms)
(ii) 2Tb3T4+1=0
LHS 2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1
We know,
a3+b3=(a+b)(a2ab+b2)sin6θ+cos6θ=(sin2θ)3+(cos2θ)=(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)=(sin4θ+cos4θsin2θ.cos2θ)
2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1=2(sin4θ+cos4θ)2sin2θ.cos2θ3(sin4θ+cos4θ)+1=1(sin4θ+cos4θ)2sin2θcos2θ=1(sin4θ+cos4θ+2sin2θcos2θ)=1(sin2θ+cos2θ)2=11=0=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon