If Tn=sinnθ+cosnθ, prove that
(i)T3−T5T1=T5−T7T3
(ii)2T6−3T4+1=0
(iii)6T10−15T8+10T6−1=0
(i)We have,
Tn=sinnθ+cosnθ.....(i)
To show: T3−T5T1=T5−T7T3
LHS=T3−T5T1
=(sin3θ+cos3θ)−(sin5θ+cos5θ)sinθ+cosθ [Substituting the values of T3,T5 and T1 from (i)]
=sin3θ−sin5θ+cos3θ−cos5θsinθ+cosθ=sin3θ(1−sin2θ)+cos3θ(1−cos2θ)sinθ+cosθ
=sin3θcos2θ+cos3θsin2θsinθ+cosθ [∵1−sin2θ=cos2θand1−cos2θ=sin2θ]
=sin2θcos2θ+(sinθ+cosθ)sinθ+cosθ=sin2θcos2θ
RHS=sin5θ+cos5θ−(sin7θ+cos7θ)sin3θ+cos3θ=sin5θ−sin7θ+cos5θ−cos7θsin3θ+cos3θ
=sin5θ(1−sin2θ)+cos5θ(1−cos2θ)sin3θ+cos3θ=sin5θcos2θ+cos5θsin2θsin3θ+cos3θ
=sin2θcos2θ(sin3θ+cos2θ)sin3θ+cos3θ=sin2θcos2θ
LHS =RHS Hence proved.
(ii)LHS=2T6−3T4+1
=2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
=2[(sin2θ)3+(cos2θ)3−3(sin2θ)2+(cos2θ)2]+1
=2[(sin2θ+cos2θ)(sin2θ)2+(cos2θ)2−(sin2θcos2θ)]−3[(sin2θ)2+(cos2θ)2+2sin2θcos2θ−2sin2θcos2θ]+1
[Using a3+b3=(a+b)(a2+b2−ab) and adding and subtracting 2sin2θcos2θ]
=2[(sin2θ+cos2θ)2−3sin2θcos2θ−3(1−2sin2θcos2θ)+1]
=2(1−3sin2θcos2θ)−3+6sin2θcos2θ+1
=2−6sin2θcos2θ−2+6sin2θcos2θ
=0
=RHS Hence proved.
(iii)LHS=6T10−15T8+10T6−1
=6(sin10θ+cos10θ)−15(sin8θ+cos8θ)+10(sin6θ+cos6θ)−1
=6sin10θ−15sin8θ+10sin6θ+6cos10θ−15cos8θ+10cos6θ−1
=sin6θ(6sin4θ−15sin2θ+10)+cos6θ(6cos4θ−15cos2θ+10)−(sin2θ+cos2θ)3
[∵1=sin2θ+cos2θ]
=sin6θ(6sin4θ−15sin2θ+10)+cos6θ(6cos4θ−15cos2θ+10)−(sin6θ+cos6θ+3sin2θcos2θ(sin2θ+cos2θ))
[Using (a+b)2=a3+b3+3ab(a+b)]
=sin6θ(6sin4θ−15cos2θ+10−1)+cos6θ(6cos4θ−15cos2θ+10−1)−3sin2θcos2×1
[∵cos2θ+sin2=1]=sin6θ(6sin4θ−9sin2θ−6sin2θ+9)+cos6θ(6cos4θ−9cos2θ−6cos2θ+9)−3sin2θcos2θ
[On splitting the middle term]
=sin6θ[3sin2θ(2sin2θ−3)−3(2sin2θ−3)]+cos6θ[3cos2θ(2cos2θ−3)−3(2cos2θ−3)]−3sin2θcos2θ
=sin6θ(2sin2θ−3)(3sin2θ−3)+cos6θ(2cos2θ−3)(3cos2θ−3)−3sin2θcos2θ
=sin6θ×(−3)(2sin2θ−3)(1−sin2θ)+cos6θ×(−3)(2cos2θ−3)(1−cos2θ)−3sin2θcos2θ
=−3sin6θ(2sin2θ−3)cos2θ−3cos6θ(2cos2θ−3)sin2θ−3sin2θcos2θ
=6sin8θ+cos2θ+6sin6θcos2θ−6cos8θsin2θ+9cos6θ+sin2θ−3sin2θcos2θ
=−6sin2θ+cos2θ(sin6θ+cos6θ)+9sin2θcos2θ(sin4θ+cos4θ)−3sin2θcos2θ
=−6sin2θcos2θ[(sin2θ)3+(cos2θ)3]+9sin2θcos2θ[(sin2θ)2+(cos2θ)2]−3sin2θcos2θ
=−6sin2θcos2θ(sin2θ+cos2θ)+(sin4θ+cos4θ−sin2θcos2θ)+9sin2θcos2θ(sin4θ+cos4θ)−3sin2θcos2θ [Using a3+b3=(a+b)(a2+b2−ab)]
=−6sin2θcos2θ(sin4θcos4θ−sin2θcos2θ)+9sin2θcos2θ(sin4θ+cos4θ)−3sin2θcos2θ(∵cos2θ+sin62θ=1)
=−6sin2θcos2θ(sin4θ+cos4θ)+6sin4θcos4θ+9sin2θcos2θ(sin4θ+cos4θ)−3sin2θcos2θ
=3sin2θcos2θ(sin4θ+cos4θ)+6sin4θcos4θ−3sin2θcos2θ
=3sin2θcos2θ[(sin2θ)2+(cos2θ)2+2sin62θcos2θ−2sin2θcos2θ]+6sin4θcos4θ−3sin62θcos2θ (adding and subtracting 2sin2θcos2θ)
=3sin2θcos2θ((sin2θ+cos2θ)2−2sin2θcos2θ−2sin2θcos2θ)+6sin4θcos4θ−3sin2θcos2θ
=3sin2θcos2θ(1−2sin2θcos2θ)+6sin4θcos4θ−3sin2θcos2θ
=3sin2θcos2θ(1−2sin2θcos2θ)+6sin4θcos4θ−3sin2θcos2θ
=3sin2θcos2θ−6sin4θcos4θ+6sin4θ−3sin62θcos2θ
=0 =RHS Hence proved.