wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tn=sinnθ+cosnθ, prove that

(i)T3T5T1=T5T7T3

(ii)2T63T4+1=0

(iii)6T1015T8+10T61=0

Open in App
Solution

(i)We have,

Tn=sinnθ+cosnθ.....(i)

To show: T3T5T1=T5T7T3

LHS=T3T5T1

=(sin3θ+cos3θ)(sin5θ+cos5θ)sinθ+cosθ [Substituting the values of T3,T5 and T1 from (i)]

=sin3θsin5θ+cos3θcos5θsinθ+cosθ=sin3θ(1sin2θ)+cos3θ(1cos2θ)sinθ+cosθ

=sin3θcos2θ+cos3θsin2θsinθ+cosθ [1sin2θ=cos2θand1cos2θ=sin2θ]

=sin2θcos2θ+(sinθ+cosθ)sinθ+cosθ=sin2θcos2θ

RHS=sin5θ+cos5θ(sin7θ+cos7θ)sin3θ+cos3θ=sin5θsin7θ+cos5θcos7θsin3θ+cos3θ

=sin5θ(1sin2θ)+cos5θ(1cos2θ)sin3θ+cos3θ=sin5θcos2θ+cos5θsin2θsin3θ+cos3θ

=sin2θcos2θ(sin3θ+cos2θ)sin3θ+cos3θ=sin2θcos2θ

LHS =RHS Hence proved.

(ii)LHS=2T63T4+1

=2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1

=2[(sin2θ)3+(cos2θ)33(sin2θ)2+(cos2θ)2]+1

=2[(sin2θ+cos2θ)(sin2θ)2+(cos2θ)2(sin2θcos2θ)]3[(sin2θ)2+(cos2θ)2+2sin2θcos2θ2sin2θcos2θ]+1

[Using a3+b3=(a+b)(a2+b2ab) and adding and subtracting 2sin2θcos2θ]

=2[(sin2θ+cos2θ)23sin2θcos2θ3(12sin2θcos2θ)+1]

=2(13sin2θcos2θ)3+6sin2θcos2θ+1

=26sin2θcos2θ2+6sin2θcos2θ

=0

=RHS Hence proved.

(iii)LHS=6T1015T8+10T61

=6(sin10θ+cos10θ)15(sin8θ+cos8θ)+10(sin6θ+cos6θ)1

=6sin10θ15sin8θ+10sin6θ+6cos10θ15cos8θ+10cos6θ1

=sin6θ(6sin4θ15sin2θ+10)+cos6θ(6cos4θ15cos2θ+10)(sin2θ+cos2θ)3

[1=sin2θ+cos2θ]

=sin6θ(6sin4θ15sin2θ+10)+cos6θ(6cos4θ15cos2θ+10)(sin6θ+cos6θ+3sin2θcos2θ(sin2θ+cos2θ))

[Using (a+b)2=a3+b3+3ab(a+b)]

=sin6θ(6sin4θ15cos2θ+101)+cos6θ(6cos4θ15cos2θ+101)3sin2θcos2×1

[cos2θ+sin2=1]=sin6θ(6sin4θ9sin2θ6sin2θ+9)+cos6θ(6cos4θ9cos2θ6cos2θ+9)3sin2θcos2θ

[On splitting the middle term]

=sin6θ[3sin2θ(2sin2θ3)3(2sin2θ3)]+cos6θ[3cos2θ(2cos2θ3)3(2cos2θ3)]3sin2θcos2θ

=sin6θ(2sin2θ3)(3sin2θ3)+cos6θ(2cos2θ3)(3cos2θ3)3sin2θcos2θ

=sin6θ×(3)(2sin2θ3)(1sin2θ)+cos6θ×(3)(2cos2θ3)(1cos2θ)3sin2θcos2θ

=3sin6θ(2sin2θ3)cos2θ3cos6θ(2cos2θ3)sin2θ3sin2θcos2θ

=6sin8θ+cos2θ+6sin6θcos2θ6cos8θsin2θ+9cos6θ+sin2θ3sin2θcos2θ

=6sin2θ+cos2θ(sin6θ+cos6θ)+9sin2θcos2θ(sin4θ+cos4θ)3sin2θcos2θ

=6sin2θcos2θ[(sin2θ)3+(cos2θ)3]+9sin2θcos2θ[(sin2θ)2+(cos2θ)2]3sin2θcos2θ

=6sin2θcos2θ(sin2θ+cos2θ)+(sin4θ+cos4θsin2θcos2θ)+9sin2θcos2θ(sin4θ+cos4θ)3sin2θcos2θ [Using a3+b3=(a+b)(a2+b2ab)]

=6sin2θcos2θ(sin4θcos4θsin2θcos2θ)+9sin2θcos2θ(sin4θ+cos4θ)3sin2θcos2θ(cos2θ+sin62θ=1)

=6sin2θcos2θ(sin4θ+cos4θ)+6sin4θcos4θ+9sin2θcos2θ(sin4θ+cos4θ)3sin2θcos2θ

=3sin2θcos2θ(sin4θ+cos4θ)+6sin4θcos4θ3sin2θcos2θ

=3sin2θcos2θ[(sin2θ)2+(cos2θ)2+2sin62θcos2θ2sin2θcos2θ]+6sin4θcos4θ3sin62θcos2θ (adding and subtracting 2sin2θcos2θ)

=3sin2θcos2θ((sin2θ+cos2θ)22sin2θcos2θ2sin2θcos2θ)+6sin4θcos4θ3sin2θcos2θ

=3sin2θcos2θ(12sin2θcos2θ)+6sin4θcos4θ3sin2θcos2θ

=3sin2θcos2θ(12sin2θcos2θ)+6sin4θcos4θ3sin2θcos2θ

=3sin2θcos2θ6sin4θcos4θ+6sin4θ3sin62θcos2θ

=0 =RHS Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon