If Tn=sinnθ+cosnθ, then ˙T3−T5T1≠T5−T7T3
If Tn=sinnθ+cosnθ, prove that
(i)T3−T5T1=T5−T7T3
(ii)2T6−3T4+1=0
(iii)6T10−15T8+10T6−1=0