Tn=sinnx+cosnx
T3=sin3x+cos3x
T4=sin4x+cos4x
T5=sin5x+cos5x
T6=sin6x+cos6x
similarly we can find T1,T7 also,
T3−T5T1=T5−T7T3
(I) (II)
(I) =sin3x+cos3x−sin5x−cos5xsinx+cosx
⇒sin3x(1−sin2x)+cos3x(1−cos2x)sinx+cosx
∵sin2θ+cos2θ=1
⇒sin3x.(cos2x)+cos3x(sin2x)sinx+cosx
⇒sin2xcos2x(sinx+cosx)sinx+cosx
I=sin2xcos2x⟶(1)
II=T5−T7T3
⇒sin5x+cos5x−sin7x−cos7xsin3x+cos3x
⇒sin5x(1−sin2x)+cos5x(1−cos2x)sin3x+cos3x
∵sin2θ+cos2θ=1
⇒sin5xcos2x+cos5xsin2xsin3x+cos3x
⇒sin2xcos2x(sin3x+cos3x)sin3x+cos3x
⇒sin2xcos2x=II
So I=II
⇒I−II=0