wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tn=sinnx+cosnx, then find T3T5T1T5T7T3.

Open in App
Solution

Tn=sinnx+cosnx

T3=sin3x+cos3x

T4=sin4x+cos4x

T5=sin5x+cos5x

T6=sin6x+cos6x

similarly we can find T1,T7 also,

T3T5T1=T5T7T3

(I) (II)

(I) =sin3x+cos3xsin5xcos5xsinx+cosx

sin3x(1sin2x)+cos3x(1cos2x)sinx+cosx

sin2θ+cos2θ=1

sin3x.(cos2x)+cos3x(sin2x)sinx+cosx

sin2xcos2x(sinx+cosx)sinx+cosx

I=sin2xcos2x(1)

II=T5T7T3

sin5x+cos5xsin7xcos7xsin3x+cos3x

sin5x(1sin2x)+cos5x(1cos2x)sin3x+cos3x

sin2θ+cos2θ=1

sin5xcos2x+cos5xsin2xsin3x+cos3x

sin2xcos2x(sin3x+cos3x)sin3x+cos3x

sin2xcos2x=II

So I=II

III=0


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon