wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tn=sinnx+cosnx, then find the value of 6T1015T8+10T6.

Open in App
Solution

Tn=sinnx+cosnx

T10=sin10x+cos10x

T6=sin6x+cos6x

T8=sin8x+cos8x

6T1015T8+10T6

T6=(sin2x)3+(cos2x)3

a3+b3=(a+b)(a2+b2ab)

T6=(sin2x+cos2x)(sin4x+cos4xsin2xcos2x)

T6=sin4x+cos4xsin2xcos2x

a2+b2=(a+b)22ab

T6=(sin2x)2+(cos2x)2sin2xcos2x

=(sin2x+cos2x)23sin2xcos2x

=13sin2xcos2x

similarly, we can calculate T8 & T10

T8=(sin6x+cos6x)(sin2x+cos2x)sin2xcos2x(sin4x+cos4x)

=13sin2xcos2xsin2xcos2x(12sin2xcos2x)

=14sin2xcos2x+2sin4xcos4x

T10=(sin6x+cos6x)(sin4x+cos4x)sin4xcos4x(sin2x+cos2x)

=(13sin2xcos2x)(12sin2xcos2x)sin4xcos4x

=15sin2xcos2x+5sin4xcos4x

putting T6,T8 and T10 in 6T1015T8+10T6 we get 1.
Hence, the answer is 1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon