T10=sin10x+cos10x
T6=sin6x+cos6x
T8=sin8x+cos8x
⇒6T10−15T8+10T6
T6=(sin2x)3+(cos2x)3
∵a3+b3=(a+b)(a2+b2−ab)
T6=(sin2x+cos2x)(sin4x+cos4x−sin2xcos2x)
T6=sin4x+cos4x−sin2xcos2x
∵a2+b2=(a+b)2−2ab
⇒T6=(sin2x)2+(cos2x)2−sin2xcos2x
=(sin2x+cos2x)2−3sin2xcos2x
=1−3sin2xcos2x
similarly, we can calculate T8 & T10
T8=(sin6x+cos6x)(sin2x+cos2x)−sin2xcos2x(sin4x+cos4x)
=1−3sin2xcos2x−sin2xcos2x(1−2sin2xcos2x)
=1−4sin2xcos2x+2sin4xcos4x
T10=(sin6x+cos6x)(sin4x+cos4x)−sin4xcos4x(sin2x+cos2x)
=(1−3sin2xcos2x)(1−2sin2xcos2x)−sin4xcos4x
=1−5sin2xcos2x+5sin4xcos4x
putting T6,T8 and T10 in 6T10−15T8+10T6 we get 1.
Hence, the answer is 1.