2Tb−3T4+1=0
LHS 2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
We know
a3+b3=(a+b)(a2−ab+b2)
∴sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)(sin4θ+cos4θ−sin2θcos2θ)
=(sin4θ+cos4θ−sin2θ.cos2θ)
∴2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+12(sin4θ+cos4θ)−2sin2θ.cos2θ−3(sin4θ+cos4θ)+1
=1−(sin4θ+cos4θ)−2 sin2θcos2θ
=1−(sin4θ+cos4θ+2 sin2θcos2θ)
=1−(sin2θ+cos2θ)2
=1−1=0=RHS