wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tnθ+cosnθ, prove that
i) 2T63T4+1=0

Open in App
Solution

2Tb3T4+1=0
LHS 2(sin6θ+cos6θ)3(sin4θ+cos4θ)+1
We know
a3+b3=(a+b)(a2ab+b2)
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)
=(sin4θ+cos4θsin2θ.cos2θ)
2(sin6θ+cos6θ)3(sin4θ+cos4θ)+12(sin4θ+cos4θ)2sin2θ.cos2θ3(sin4θ+cos4θ)+1
=1(sin4θ+cos4θ)2 sin2θcos2θ
=1(sin4θ+cos4θ+2 sin2θcos2θ)
=1(sin2θ+cos2θ)2
=11=0=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon