wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan1(2x)+tan1(3x)=π/4 then x= ?

Open in App
Solution

tan1(2x)+tan1(3x)=π4
We know that,
tan1a+tan1b=tan1(a+b1ab)
Using the above identity we get
tan12x+tan13x=tan1(2x+3x12x3x)=tan1(5x16x2)
tan15x16x2=π4
tan15x16x2=tan11
5x16x2=1
6x2+1=5x
6x2+5x1=0
6x2+6xx1=0
6x(x+1)1(x+1)=0
(6x1)(x+1)=0
x=16or1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon