1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
If tan - 1α...
Question
If
tan
−
1
α
+
tan
−
1
β
=
π
4
, then twice write the value of
α
+
β
+
α
β
.
Open in App
Solution
t
a
n
−
1
(
α
)
+
t
a
n
−
1
(
β
)
=
π
4
⇒
t
a
n
−
1
(
α
+
β
1
−
α
β
)
=
π
4
⇒
α
+
β
1
−
α
β
=
t
a
n
(
π
4
)
=
1
⇒
α
+
β
=
1
−
α
β
⇒
α
+
β
+
α
β
=
1
∴
α
+
β
+
α
β
=
1
and
2
(
α
+
β
+
α
β
)
=
2
Suggest Corrections
0
Similar questions
Q.
By using
L
M
V
T
, prove that
β
−
α
1
+
β
2
<
tan
−
1
β
−
tan
−
1
α
<
β
−
α
1
+
α
2
,
β
−
α
<
0
.
Q.
If α and β are the zeros of the quadratic polynomial f(x) = x
2
− x − 4, find the value of
1
α
+
1
β
-
αβ
.