wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan147+tan1419+tan1439+tan1467+=π4+cot1k, where kZ, then the value of k is

Open in App
Solution

Let,
S=7+19+39+67++TnS= 7193967Tn0=7+12+20+28+TnTn=7+12+20+28+Tn=7+n12[24+8(n2)]Tn=7+4(n1)(n+1)Tn=4n2+3

Therefore, the series can be written as,
S1=n=1tan144n2+3
=n=1tan11n2+34
=n=1tan111+(n214)
=n=1tan111+(n12)(n+12)
=n=1tan1(n+12)(n12)1+(n12)(n+12)
=n=1tan1(n+12)tan1(n12)
=limntan1(n+12)tan1(12)
=π2tan112

π2tan112=π4+cot1k
cot1k=π4tan112cot1k=tan11tan112cot1k=tan113=cot13k=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon