Let,
S=7+19+39+67+⋯+Tn−S= −7−19−39−67−⋯−Tn0=7+12+20+28+⋯−Tn⇒Tn=7+12+20+28+⋯⇒Tn=7+n−12[24+8(n−2)]⇒Tn=7+4(n−1)(n+1)⇒Tn=4n2+3
Therefore, the series can be written as,
S1=∞∑n=1tan−144n2+3
=∞∑n=1tan−11n2+34
=∞∑n=1tan−111+(n2−14)
=∞∑n=1tan−111+(n−12)(n+12)
=∞∑n=1tan−1(n+12)−(n−12)1+(n−12)(n+12)
=∞∑n=1tan−1(n+12)−tan−1(n−12)
=limn→∞tan−1(n+12)−tan−1(12)
=π2−tan−112
⇒π2−tan−112=π4+cot−1k
⇒cot−1k=π4−tan−112⇒cot−1k=tan−11−tan−112⇒cot−1k=tan−113=cot−13⇒k=3