Differentiate w.r.t x to find dydx
Given : y=tan−1x
Differentiating both sides w.r.t, x
⇒dydx=11+x2
Find the value of d2ydx2
Again, differentiating both sides w.r.t. x
⇒ddx(dydx)=d2ydx2=ddx(11+x2)
⇒d2ydx2=−1(1+x2)−2.ddx(1+x2)
⇒d2ydx2=−2x(1+x2)2
⇒d2ydx2=−2tany(1+tan2y)2
[∵y=tan−1x⇒tany=x]
⇒d2ydx2=−2tanysecy=−2sinycos4ycosy
[∵tanx=sinxcosx,secx=1cosx]
⇒d2ydx2=−2sinycos3y
Hence,d2ydx2=−2sin y cos3y