wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1x, find d2ydx2
in terms of 𝑦 alone.


Open in App
Solution

Differentiate w.r.t x to find dydx
Given : y=tan1x
Differentiating both sides w.r.t, x
dydx=11+x2
Find the value of d2ydx2
Again, differentiating both sides w.r.t. x
ddx(dydx)=d2ydx2=ddx(11+x2)
d2ydx2=1(1+x2)2.ddx(1+x2)
d2ydx2=2x(1+x2)2
d2ydx2=2tany(1+tan2y)2
[y=tan1xtany=x]
d2ydx2=2tanysecy=2sinycos4ycosy
[tanx=sinxcosx,secx=1cosx]
d2ydx2=2sinycos3y
Hence,d2ydx2=2sin y cos3y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon