If tanโ11aโ1=tanโ11x+tanโ11a2โx+1, then x is
tan−(1a−1)−tan−(1x)=tan−(1a2−x+1)tan−((1a−1)−(1x)1+(1a−1)⋅(1x))=tan−((1a2−x+1))(x−(a−1)(a−1)x)⋅((a−1)x(a−1)x+1)=(1a2−x+1)(x−a+1(a−1)x+1)=(1a2−x+1)(x−a+1)(a2−x+1)=(a−1)x+1(a2+1)x−x2+(1−a)(a2+1)−(1−a)x=(a−1)x+1(a2+1)x−x2+(a2+1)−a3−a=1x2−(1+a2)x+(a3−a2+a)=0clearlyx=asatisfiesthegivenequation