If tan−11−x1+x=12tan−1x, then the value of x is
1/2
2
∵tan−11−x1+x=12tan−1x Let x=tanθ ∴tan−1(1−tanθ1+tanθ)=12tan−1(tan θ) ⇒tan−1(tan(π4−θ))=12tan−1(tan θ) ⇒π4−θ=θ2 ⇒3π2=π4⇒θ=π6 ∴x=tan θ=tanπ6=1√3