Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aπ4 tan−12m2+m2+m4=tan−12m1+(m4+m2+1)=tan−1(m2+m+1)−(m2−m+1)1+(m2+m+1)(m2−m+1)=tan−1(m2+m+1)−tan−1(m2−m+1)
Let Sn=∑nm=1tan−12m2+m2+m4=(tan−13=tan−11)+(tan−17−tan−13)+(tan−13−tan−17)+......+tan−1(n2+n+1)−tan−1(n2−n+1)=tan−1(n2+n+1)−tan−11
As n→∞,tan−2(n2+n+1)→π2
as n2+n+1→∞
Hence S∞=π2−π4=π4.