wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan1(1+x2+1x21+x21x2)=α, then x2 is equal to :

A
sin2α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sinα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
cos2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
cosα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A sin2α
We have,
tan1(1+x2+1x21+x21x2)=α
tan1(1+x2+1x21+x21x2×1+x2+1x21+x2+1x2)=α
1+x2+1x2+2(1+x2)(1x2)2x2=tanα
2+2(1+x2)(1x2)2x2=tanα
1+1(1+x2)(1x2)x2=tanα
Let x2=sinθ ----------------------(i)
1+(1sin2θ)sinθ=tanα
1+cosθsinθ=tanα

Now, using identities :
cos2θ=2cos2θ1
sin2θ=2sinθcosθ

2cos2θ22sinθ2cosθ2=tanα
cotθ2=tanα
π2θ2=α
θ=π2α
Using (i),
x2=sinθ
x2=sin(π2α)
x2=sin(2α)

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon