The correct option is C 43
Given : tan−1(x−1x+1)+tan−1(2x−12x+1)=tan−12336
We have x>1
Now,
x−1x+1=1−2x+1⇒x−1x+1∈(0,1)2x−12x+1=1−22x+1⇒2x−12x+1∈(13,1)∴x−1x+1×2x−12x+1∈(0,1)
Now, the equation becomes
x−1x+1+2x−12x+11−x−1x+1×2x−12x+1=2336⇒2x2−13x=2336⇒24x2−23x−12=0⇒24x2−32x+9x−12=0⇒(3x−4)(8x+3)=0⇒x=43 (∵x>1)
Hence, the only solution is x=43