If tan−1(x+3x)−tan−1(x−3x)=tan−1(6x), then the value of 5x8−4x4+7 equals
397
393
376
379
We have tan−1(x+3x)−tan−1(x−3x)=tan−1(6x)⇒tan−1((x+3x)−(x−3x)1+(x+3x)(x−3x))=tan−16x⇒x2−9x2=0⇒x4=9 Hence, (5x8−4x4+7)=5(81)−4(9)+7=405−36+7=412−36=376