If tan−1(√cos2x)−cot−1(√cos2x)=x, then which of the following options is always CORRECT?
A
sinx=tan2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinx=−tan2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
sinx=cot2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sinx=−cot2x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bsinx=−tan2x tan−1(√cos2x)−cot−1(√cos2x)=x ⇒2tan−1(√cos2x)=x+π2 (∵tan−1A+cot−1A=π2) ⇒√cos2x=tan(x2+π4) ⇒√cos2x=cosx2+sinx2cosx2−sinx2
Squaring both sides, we get cos2x=1+2cosx2sinx21−2cosx2sinx2 ⇒1−tan2x1+tan2x=1+sinx1−sinx
Applying componendo and dividendo, 2−2tan2x=22sinx ⇒sinx=−tan2x