1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
If tan θ1tanθ...
Question
If tan θ
1
tan θ
2
= k, then
cos
θ
1
-
θ
2
cos
θ
1
+
θ
2
=
(a)
1
+
k
1
-
k
(b)
1
-
k
1
+
k
(c)
k
+
1
k
-
1
(d)
k
-
1
k
+
1
Open in App
Solution
(a)
1
+
k
1
-
k
cos
(
θ
1
-
θ
2
)
cos
(
θ
1
+
θ
2
)
=
cos
θ
1
cos
θ
2
+
sin
θ
1
sin
θ
2
cos
θ
1
cos
θ
2
-
sin
θ
1
sin
θ
2
Dividing
numerator
and
denominator
by
cos
θ
1
cos
θ
2
,
we get
:
1
+
tan
θ
1
tan
θ
2
1
-
tan
θ
1
tan
θ
2
=
1
+
k
1
-
k
Suggest Corrections
0
Similar questions
Q.
If
t
a
n
θ
1
t
a
n
θ
2
=
k
,
then
c
o
s
(
θ
1
−
θ
2
)
c
o
s
(
θ
1
+
θ
2
)
Q.
If
tan
θ
1
tan
θ
2
=
k
, then
cos
(
θ
1
−
θ
2
)
cos
(
θ
1
+
θ
2
)
=
Q.
If 1K × K1 = K2K, the letter K stands for the digit
A. 1
B. 2
C. 3
D. 4