If tanā1(xā1)+tanā1(x+1)+tanā1x=tanā13x, then in the interval [ā1,1], then x has :
A
one value
No worries! Weāve got your back. Try BYJUāS free classes today!
B
2 values
No worries! Weāve got your back. Try BYJUāS free classes today!
C
3 values
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
No value
No worries! Weāve got your back. Try BYJUāS free classes today!
Open in App
Solution
The correct option is C 3 values Given equation ⇒tan−1(x−1)+tan−1(x+1)=tan−13x−tan−1x ⇒tan−1(x−1)+(x+1)1−(x−1)(x+1)=tan−13x−x1+3x.x ⇒2x2−x2=2x1+3x2 ⇒2x(4x2−1)=0⇒x=0,±12
All three solutions satisfy the given equation.