tan1x+tan1y+tan1z=π2
By taking L.H.S.
=tan1x+tan1y+tan1z
=tan1(x+y1−xy)+tan1z
[∵tan1x+tan1y=tan1(x+y1−xy)]
=tan1⎛⎜
⎜
⎜
⎜⎝x+y1−xy+z1−(x+y)1−xy.z⎞⎟
⎟
⎟
⎟⎠
[∵tan1x+tan1y=tan1(x+y1−xy)]
=tan1(x+y+z−xyz1−xy−xz−yz×1−xy1−xy)
=tan1(x+y+z−xyz1−xy−xz−yz)
∵tan1x+tan1y+tan1z=π2
∴tan1(x+y+z−xyz1−xy−xz−yz)=π2
x+y+z−xyz1−xy−xz−yz=tanπ2
x+y+z−xyz1−xy−xz−yz=10[∵tanπ2=∞=10]
0×[x+y+z−xyz]=[1−xy−yz−xz]×1
0=1−xy−yz−xz
xy+yz+zx=1.