If tan−1x+tan−1y+tan−1z=π2, then
x+y+z−xyz=0
x+y+z+xyz=0
xy+xz+zy+1=0
xy+xz+zy−1=0
Explanation for the correct option:
Use formula tan−1A+tan−1B=tan−1A+B1-AB
Given the equation: tan−1x+tan−1y+tan−1z=π2,
Simplify as shown,
tan−1x+tan−1y+tan−1z=π2tan−1x+tan−1y=π2−tan−1z⇒tan−1x+y1−xy=cot−1z⇒x+y1−xy=tantan−11z⇒x+y1−xy=1z⇒xz+zy=1−xy⇒xy+xz+zy−1=0
Hence, the correct option is (D).