Let
y=(tan−1x)y+ycotx−1Now let u=(tan−1x)y and v=ycotx
starting with u, we get,
u=(tan−1x)y
logu=ylog(tan−1x)
1u.dudx=yddxlog(tan−1)+log(tan−1)dydx
⇒ 1u.dudx=y(tan−1x).11+x2+log(tan−1x)dydx
⇒ dudx=y(tan−1x)y(tan−1x).11+x2+(tan−1x)y.log(tan−1x)dydx
⇒ dudx=y.(tan−1x)y−11−x2+(tan−1x)y.log(tan−1x)dydx ------ ( 1 )
And now v=ycotx
Taking log we get,
logv=cotxlogy
On differentiating we get,
1vdvdx=cotxddxlogy+logyddxcotx
⇒ 1vdvdx=cotxydydx−cosec2x.logy
⇒ dvdx=ycotx.cotxy.dydx−ycotx.cosec2x.logy
⇒ dvdx=ycotx−1.cotx.dydx−ycotx.cosec2x.logy ----- ( 2 )
Now, dydx=dudx+dvdx−0
⇒ dydx=y.(tan−1x)y−11+x2+(tan−1x)y.log(tan−1x)dydx+ycotx−1.cotx.dydx−ycotx.cosec2x.logy
⇒ dydx−(tan−1)y.log(tan−1x)dydx−ycotx−1.cotx.dydx=y(tan−1x)y−11+x2−ycotx.cosec2x.logy
⇒ dydx(1−(tan−1x)y.log(tan−1x)−ycotx−1.cotx)=y.(tan−1x)y−11+x2−ycotx.cosec2x.logy
∴ dydx=y(tan−1x)y−11+x2−ycotx.cosec2x.logy(1−(tan−1x)y.log(tan−1x)−ycotx−1.cotx