If tan22∘+tan24∘+⋯+tan288∘=a, then the value of 89∘∑θ=1∘sin4θ+cos4θsin2θcos2θ is
A
2(89+4a)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2(89−2a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(89+2a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2(89−4a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2(89+4a) sin4θ+cos4θsin2θcos2θ=(sin2θ−cos2θ)2+2sin2θcos2θsin2θcos2θ ⇒sin4θ+cos4θsin2θcos2θ=(tanθ−cotθ)2+2
Let 89∘∑θ=1∘((tanθ−cotθ)2+2)=S
Since tanθ−cotθ=sinθcosθ−cosθsinθ =sin2θ−cos2θsinθcosθ =−2cos2θsin2θ=−2cot2θ ∴S=2(89)+489∘∑θ=1∘(cot22θ)